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0 Background and Motivations

@ Linear equation

e Nonlinear equation

@ singular DDSDE
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Motivation-(Mean field limit)

@ Consider the following N-particle systems:

dXi = Viat,
thi = b(Ztl) + 1N 2#/ K(Xti - X{) + \ﬁdB{»

where i =1,2,.., N,

Z' = (X', V') € R??: position and velocity of particle number i
B!: independent Brownian motions

b: the random enviroment depending on Z'.

K: interaction kernel.
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Motivation-(Mean field limit)

@ Consider the following N-particle systems:

dXi = Viat,

thi = b(Ztl) + 1N 2#/ K(Xti - X{) + \ﬁdB{»
where i =1,2,..,N,
Z'= (X', V) e R?“: position and velocity of particle number i
B;: independent Brownian motions

b: the random enviroment depending on Z'.
K: interaction kernel.

@ Formally, by 1t8’s formula, the limit u of the empirical measure uy := Z,’L 5(X{7V[,-)
solves the following equation if divyb =0

ou=Au+v-Vyu+b-Vyu+ K= (u)-Vyu, u(0)= uo, (1)
with (u) = [ udv.
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Motivation-(Mean field limit)

@ Consider the following N-particle systems:
dx} = V{dt,
thi = b(Ztl) + 1N 2#/ K(Xti - X{) + \ﬁdB{»
where i =1,2,..,N,
Z'= (X', V) e R?“: position and velocity of particle number i
B;: independent Brownian motions

b: the random enviroment depending on Z'.
K: interaction kernel.

@ Formally, by 1t8’s formula, the limit u of the empirical measure uy := Z,’L 5(X{7V[,-)
solves the following equation if divyb =0

ou=Au+v-Vyu+b-Vyu+ K= (u)-Vyu, u(0)= uo, (1)

with (u) = [ udv.
@ Problem: For b singular, (e.g. spatial white noise), global well-posedness of (1)?
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DDSDE

@ When b, K are smooth, the solution of the Fokker-Planck equation (1) is the density
of the following Distribution Dependent SDE(DDSDE):

dX; = Vidt
dVi = b(Z)dt + [oo K(Xt — y)pe(dy)dt + dB; (2)
Zy ~ Updxdv,

where y; is the distribution of X; and B; is a standard BM.
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DDSDE

@ When b, K are smooth, the solution of the Fokker-Planck equation (1) is the density
of the following Distribution Dependent SDE(DDSDE):

dX; = Vidt
dVi = b(Z)dt + [oo K(Xt — y)pe(dy)dt + dB; (2)
Zy ~ Updxdv,

where y; is the distribution of X; and B; is a standard BM.

@ When b is regular: Jabin, Wang 16, Chaudru de Raynal 12, Zhang 18, Wang and
Zhang, Chaudru de Raynal, Honoré, Menozii 18, Chen and Zhang 16, & Hao, Wu,
Zhang 20
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DDSDE

@ When b, K are smooth, the solution of the Fokker-Planck equation (1) is the density
of the following Distribution Dependent SDE(DDSDE):

dX; = Vidt
dVi = b(Z)dt + [oo K(Xt — y)pe(dy)dt + dB; (2)
Zy ~ Updxdv,

where y; is the distribution of X; and B; is a standard BM.

@ When b is regular: Jabin, Wang 16, Chaudru de Raynal 12, Zhang 18, Wang and
Zhang, Chaudru de Raynal, Honoré, Menozii 18, Chen and Zhang 16, & Hao, Wu,
Zhang 20

@ Problem: For b singular, (e.g. spatial white noise), global well-posedness of (2)?
Nonlinear martingale problem.
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Difficulty

@ Consider the following equation
u=Au+vVv-Vxu+b-Vyu+K=(u) -Vyu+f, u(0)=uo,
with (u) = [ udv.
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Difficulty

@ Consider the following equation
u=Au+vVv-Vxu+b-Vyu+K=(u) -Vyu+f, u(0)=uo,

with (u) = [ udv.
@ Forsome a € (4,2), k € (0,1),

273
b e LT7C,"(px). f € LFCZ%(px)s
where p,.(x) := (x)7" := (1 + [x|?) /2.
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Difficulty

@ Consider the following equation
Owu=A0u+Vv-Vxu+b-Vyu+Kx(u)-Vou+1f, u0)=u,
with (u) = [ udv.
@ Forsome o € (3, 2), k € (0,1),
b e LFC;%(pe), f € LFCT%(ps),

where p,.(x) := (x)7" := (1 + [x|?) /2.

@ Difficulty: Due to transport term v - Vx we can gain % regularity in x direction by
kinetic Schauder estimate (scaling of x and vis 3 : 1)
= the best regularity of the solution is in L$°C2~* with C2~* anisotropic Besov
space.
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Difficulty

@ Consider the following equation
Owu=A0u+Vv-Vxu+b-Vyu+Kx(u)-Vou+1f, u0)=u,
with (u) = [ udv.
@ Forsome o € (3, 2), k € (0,1),
b e LFC;%(pe), f € LFCT%(ps),

where p,.(x) := (x)7" := (1 + [x|?) /2.

@ Difficulty: Due to transport term v - Vx we can gain % regularity in x direction by
kinetic Schauder estimate (scaling of x and vis 3 : 1)
= the best regularity of the solution is in L$°C2~* with C2~* anisotropic Besov
space.

@ (lll-defined problem) b - V,u does not make sense since

Ca x Ci > (f,g)— fgeC onlyif o+ 3 > 0.
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Difficulty

@ Consider the following equation
Owu=A0u+Vv-Vxu+b-Vyu+Kx(u)-Vou+1f, u0)=u,
with (u) = [ udv.
@ Forsome o € (3, 2), k € (0,1),
b e LFC;%(pe), f € LFCT%(ps),

where p,.(x) := (x)7" := (1 + [x|?) /2.

@ Difficulty: Due to transport term v - Vx we can gain % regularity in x direction by
kinetic Schauder estimate (scaling of x and vis 3 : 1)
= the best regularity of the solution is in L$°C2~* with C2~* anisotropic Besov
space.

@ (lll-defined problem) b - V,u does not make sense since

Ca x Ci > (f,g)— fgeC onlyif o+ 3 > 0.

@ Similar difficulty as in singular SPDEs:
Hairer 14 the theory of regularity structures
Gubinelli, Imkeller and Perkowski 15 : paracontrolled distribution method
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Difficulty

@ Consider the following equation
u=Au+vVv-Vxu+b-Vyu+K=(u) -Vyu+f, u(0)=uo,

with (u) = [ udv.
@ Forsome a € (4,2), k € (0,1),

2’3
b e LFC;(px), f € LFC7(p),

where p,.(x) := (x)7" := (1 + [x|?) /2.

@ Difficulty: Due to transport term v - Vx we can gain % regularity in x direction by
kinetic Schauder estimate (scaling of x and vis 3 : 1)
= the best regularity of the solution is in L$°C2~* with C2~* anisotropic Besov
space.

@ (lll-defined problem) b - V,u does not make sense since

Ca x Ci > (f,g)— fgeC onlyif o+ 3 > 0.

@ Similar difficulty as in singular SPDEs:

Hairer 14 the theory of regularity structures

Gubinelli, Imkeller and Perkowski 15 : paracontrolled distribution method
@ Aim: develop paracontrolled calculus to get global well-posedness of (2)
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Linear equation

Linear equation
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Linear equation

@ For X\ > 0, we consider the following linear PDE:
Hu=0r—Ay—v-Vx+Nu=b-Vyu+f, u0)=u. (3)

@ Suppose that for some « € (3, %) and py., (b, f) € LFCZ*(px).
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Linear equation

@ For X\ > 0, we consider the following linear PDE:
Hu=0r—Ay—v-Vx+Nu=b-Vyu+f, u0)=u. (3)

@ Suppose that for some « € (3, %) and py., (b, f) € LFCZ*(px).

@ First difficulty: b- Vyu is not well-defined
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Linear equation

@ For X\ > 0, we consider the following linear PDE:
Hu=0r—Ay—v-Vx+Nu=b-Vyu+f, u0)=u. (3)

@ Suppose that for some « € (3, %) and py., (b, f) € LFCZ*(px).

@ First difficulty: b- Vyu is not well-defined

@ Solution: Regularity structures/ Paracontrolled distribution
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Linear equation

For A > 0, we consider the following linear PDE:
Hu=0r—Ay—v-Vx+Nu=b-Vyu+f, u0)=u. (3)

Suppose that for some o € (3, %) and py, (b, f) € LFCZ*(px).
First difficulty: b- V,u is not well-defined

Solution: Regularity structures/ Paracontrolled distribution

e 6 o6 o

Aim: Schauder estimate for (3)
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Linear equation

For A > 0, we consider the following linear PDE:
Hu=0r—Ay—v-Vx+Nu=b-Vyu+f, u0)=u. (3)

Suppose that for some o € (3, %) and py, (b, f) € LFCZ*(px).
First difficulty: b- V,u is not well-defined

Solution: Regularity structures/ Paracontrolled distribution

e 6 o6 o

Aim: Schauder estimate for (3)
@ Second difficulty: Loss of weight from b- V,u
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Linear equation

For A > 0, we consider the following linear PDE:
Hu=0r—Ay—v-Vx+Nu=b-Vyu+f, u0)=u. (3)

Suppose that for some o € (3, %) and py, (b, f) € LFCZ*(px).

First difficulty: b- V,u is not well-defined

Solution: Regularity structures/ Paracontrolled distribution

@ Aim: Schauder estimate for (3)

@ Second difficulty: Loss of weight from b- V,u

@ Solution: localization technique developed in [Zhang, Zhu, Z. 20] for 8; — A
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Linear equation

For A > 0, we consider the following linear PDE:
Hu=0r—Ay—v-Vx+Nu=b-Vyu+f, u0)=u. (3)

Suppose that for some o € (3, %) and py, (b, f) € LFCZ*(px).

First difficulty: b- V,u is not well-defined

Solution: Regularity structures/ Paracontrolled distribution

@ Aim: Schauder estimate for (3)

@ Second difficulty: Loss of weight from b- V,u

@ Solution: localization technique developed in [Zhang, Zhu, Z. 20] for 8; — A

@ Aim: develop paracontrolled distribution method in the kinetic setting to obtain
Schauder estimate for (3).
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Kinetic Holder space and Schauder estimate

Define
rf(z) .= f(r:z), Tiz:=(x+tv,v).

Leta € (0,2) and T > 0. Define
Fale) 1= {7 Wfllep 0 2= Ifllgregin + Wlcezimy < 20

where for 3 € (0, 1),

(1) — Ti—sf(S)llL==(p)
f worn = SUp ||[f(t)||Lee(p) + SU
1fllcs 1os oy OgKDTH (Ol () 0<“7£"<1 L
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Kinetic Holder space and Schauder estimate

Define
rf(z) .= f(r:z), Tiz:=(x+tv,v).
Leta € (0,2) and T > 0. Define
Fale) 1= {7 Wfllep 0 2= Ifllgregin + Wlcezimy < 20

where for 3 € (0, 1),

(1) — Ti—sf(S)llL==(p)
f worn = SUp ||[f(t)||Lee(p) + SU
1fllcs 1os oy OgKDTH (Ol () 0<“7£"<1 L

Let .Z, = (.,f)\)_12

Lemma 2.1

[Schauder estimates] Let 3 € (0,2) and § € (B,2]. Forany q € [;%;,00] and T > 0,
there is a constant C = C(d, 3,0,q, T) > 0 such that forall x > 0 and f € L‘%Cgﬁ(p),

0.1 _4
195l So OV DE W flgos
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Paraproducts

@ Bony’s decomposition: f = 2,271 Af, Z,\f = qﬁ;??, {68} i=—1,

fg=> Df> Dg=f<g+fog+f=g,

i>—1 >0
where
f<g=g-f=> > AfAg
>0 i<j1
fog:= > Aiffg, Well-defined fora+ 8 > 0.

li—jl<1
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Paraproducts

@ Bony’s decomposition: f = 2,271 Af, Z,\f = qﬁ;??, {68} i=—1,

fg=> Df> Dg=f<g+fog+f=g,

i>—1 >0
where
f<g=g-f=> > AfAg
>0 i<j1
fog:= > Aiffg, Well-defined fora+ 8 > 0.

li—jl<1

@ f < g always well defined but regularity not better than g.
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Paraproducts

@ Bony’s decomposition: f = 2,271 Af, Z,\f = qﬁ??, {68} i=—1,

fg=> Df> Dg=f<g+fog+f=g,

i>—1 >0
where
f<g=g-f=> > AfAg
>0 i<j1
fog:= > Aiffg, Well-defined fora+ 8 > 0.

li—jl<1

@ f < g always well defined but regularity not better than g.
@ f > g, fogregularity become better if f is regular.
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Paracontrolled solution to linear PDE

Lu=b-Vyu+f=Vyu<b+Vu=b+ boVyu +f
N—— ——

bad term not well defined
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Paracontrolled solution to linear PDE

Lu=b-Vyu+f=Vyu<b+Vus=b+ boV,u +f
N—— N——
bad term not well defined
@ Paracontrolled solution:

u=vVou=< b+ U +.7f paracontrolled ansatz

regular term

Ut = A\(Vou = b+ boVyu) — [ A, Vyu <]b.

Xiangchan Zhu () Singular HJB and KPZ 2021.7.

10/19



Commutator estimate for kinetic operator

Let P; be the kinetic semigroup.

Lemma 2.2
Foranya € (0,1),3€R,t€(0,T],6>0,j> —1,

_S(a i
IAPF = 9) — (Fif < Pt (ore) S 227V e, gl gs -
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Commutator estimate for kinetic operator

Let P; be the kinetic semigroup.

Lemma 2.2

Foranya € (0,1),3€R, t€(0,T],6§ >0,/ > -1,

_S(a i
IAPF = 9) — (Fif < Pt (ore) S 227V e, gl gs -

=

Lemma 2.3
Commutator estimate

H[j/\a f <]g||L(T)-OC:+B+2(p1p2) SH f”SCf",a(P””g”L?.OCE(pg)'

= u € CrC5 *(ps), U* € CrCI 2% (ps)
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Renormalization and well-posedness of linear PDE

@ IfboV,.7\b,boV, 7\ f € L¥CL2%(p,)
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Renormalization and well-posedness of linear PDE

@ [fboV,S\b,boV, 2\f € LCL2%(p.) = bo Vu € LCL2%(p,.) by commutator
estimate and paracontrolled ansatz
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Linear equation

Renormalization and well-posedness of linear PDE
@ [fboV,S\b,boV, 2\f € LCL2%(p.) = bo Vu € LCL2%(p,.) by commutator

estimate and paracontrolled ansatz
@ Let b be a Gaussian field with the following covariance:

E(b(g1)b(gz)) / 1) Bo(—Q)(d).

Assumption: 4 is symmetric in second variable and for some 3 € (3, %),

¢
C“p/ A+ +Clayze =%

Probabilistic calculation = bo V,.#\b € LCL2%(p,.)
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Renormalization and well-posedness of linear PDE

@ [fboV,S\b,boV, 2\f € LCL2%(p.) = bo Vu € LCL2%(p,.) by commutator

estimate and paracontrolled ansatz
@ Let b be a Gaussian field with the following covariance:

E(b(91)b(g2)) / 81(¢) G2(—¢)pa(dC).

Assumption: 4 is symmetric in second variable and for some 3 € (3, %),

¢
C“p/ A+ +Clayze =%

Probabilistic calculation = bo V,.#\b € LCL2%(p,.)
Interesting point: 0th Wiener chaos is not zero but there’s no renormalization term
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Renormalization and well-posedness of linear PDE

@ [fboV,S\b,boV, 2\f € LCL2%(p.) = bo Vu € LCL2%(p,.) by commutator
estimate and paracontrolled ansatz

@ Let b be a Gaussian field with the following covariance:

E(b(91)b(g2)) / 81(¢) G2(—¢)pa(dC).

Assumption: 4 is symmetric in second variable and for some 3 € (3, %),

¢
C“p/ A+ +Clayze =%

Probabilistic calculation = bo V,.#\b € LCL2%(p,.)
Interesting point: 0th Wiener chaos is not zero but there’s no renormalization term

Theorem 1

Leta € (},%)and ¥ := 72— andd := (29+2)x < 1. Forany T > 0, (b, f) as above, 3!
y #

paracontrolled solution (u7 u*) to PDE (3) such that ||u|| cre2 (o) T U] CrE3 2% (ps5) <

C(b, f).
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near equation

Nonlinear equation
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Nonlinear mean field equation

@ Consider the following
Lu=>b-Vyu+Ksx(U)-Vu, u(0)=up.

Here (u)(t, x) := [oq u(t, x, v)dv. Assume that

*]
K € Upsa1Cl® boV,.7(b) € CL 72 (py)
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Nonlinear mean field equation

@ Consider the following
Lu=>b-Vyu+Ksx(U)-Vu, u(0)=up.

Here (u)(t, x) := [oq u(t, x, v)dv. Assume that
o
K € Upsa1Cl® boV,.7(b) € CL 72 (py)

Theorem 2
Leta € (3,%) and k be small enough so that § := 2(53%- + 1)k < 1.

@ for any probability density uy € L'(po)NC2, v > 1+a, 3 at least a probability density
paracontrolled solution u € L3°(C?~%(ps)) to nonlinear mean field equation.

o If in addition that K is bounded, then for any initial data uy € L'(po) N CY with
e " ¢ L' satisfying H(uo) := [ tpIn up < oo, the solution is unique.

v

Xiangchan Zhu () Singular HJB and KPZ 2021.7. 14/19



Idea of proof

@ A priori estimate: Linear approximation and use Theorem 1
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Idea of proof

@ A priori estimate: Linear approximation and use Theorem 1

@ Moment estimate of some SDE by Krylov's estimate = [|u(?)||1(,,) < Cll®ll11(,)
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Idea of proof

@ A priori estimate: Linear approximation and use Theorem 1

@ Moment estimate of some SDE by Krylov's estimate = [|u(?)||1(,,) < Cll®ll11(,)

@ H(p) < oo by entropy estimate = H(u(t)) + ||V\,u\|f%L1 < H(yp).
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Idea of proof

@ A priori estimate: Linear approximation and use Theorem 1
@ Moment estimate of some SDE by Krylov's estimate = [|u(?)||1(,,) < Cll®ll11(,)

@ H(p) < oo by entropy estimate = H(u(t)) + HV\,qu%L1 < H(yp).

@ Existence: approximation by convolution with smooth modifier
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Idea of proof

@ A priori estimate: Linear approximation and use Theorem 1
@ Moment estimate of some SDE by Krylov's estimate = [|u(?)||1(,,) < Cll®ll11(,)
°

H(¢) < oo by entropy estimate = H(u(t)) + HV\,UHLgu < H(yp).

Existence: approximation by convolution with smooth modifier
Uniqueness: Linear approximation and a priori estimate of \|V.,u||L2L1 and L' esti-
mate

Xiangchan Zhu () Singular HJB and KPZ 2021.7. 15/19



Singular DDSDE

Singular DDSDE
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Singular DDSDE

@ Consider the following kinetic DDSDE with singular drift:
dX; = Vidt, dVi = b(X:, Vi)dt + (K * px,)(Xe)dt + V2dB;, (5)
@ B;: a d-dimensional Brownian motion

@ ux,: law of X;

© K pu(x) = [ K(x — y)u(dy).
@ bis singular

Problem: How to understand (5)?
Consider the following linear equation for given v : [0, T] — P(R?)

Ot+ADv+Vv-VIu+b-Vyu+Kxp-Vou="F, u(T)= . (6)

Definition 4.1

(Martingale problem) Let § > 0. A probability measure P € P(Cr) is called a martingale
solution to SDE (5) starting from v € Ps(R??), ifP o Zy' = v and for all f € Cy([0, T] x
R?), ¢ € C(R?) with some v > 1+ a and pt :=Po X",

t
M= U (.2) - uf(0.20) ~ [ (s, Z:)as
0

is a martingale under P with respect to (%:). Here u}' is a solution to (6).

4
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Main results

Theorem 3

Suppose that bo V.7 (b) € CL2*(p,.) and K € Ugso_1C4. Then there exists at least

one martingale solution P to SDE (5). Moreover, if K is bounded measurable, then the
solution is unique.
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Main results

Theorem 3

Suppose that bo V.7 (b) € CL2*(p,.) and K € Ugso_1C4. Then there exists at least

one martingale solution P to SDE (5). Moreover, if K is bounded measurable, then the
solution is unique.

Idea of proof

@ Existence: approximation by convolution with smooth modifier
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Main results

Theorem 3

Suppose that bo V.7 (b) € CL2*(p,.) and K € Ugso_1C4. Then there exists at least

one martingale solution P to SDE (5). Moreover, if K is bounded measurable, then the
solution is unique.

Idea of proof

@ Existence: approximation by convolution with smooth modifier
@ Uniqueness: First for K = 0 and Girsanov’s tansformation
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DDSDE

Thank you |

Singular HJB and KPZ 2021.7. 19/19




	Background and Motivations
	Linear equation
	Nonlinear equation
	Singular DDSDE

