Singular kinetic equations

Xiangchan Zhu (A joint work with Zimo Hao, Xicheng Zhang and Rongchan Zhu) Chinese Academy of Science

2021.7.

[Background and Motivations](#page-2-0)

[Linear equation](#page-14-0)

Motivation-(Mean field limit)

Consider the following *N*-particle systems:

$$
\begin{cases} dX_t^i = V_t^i dt, \\ dV_t^i = b(Z_t^i) + \frac{1}{N} \sum_{j \neq i} K(X_t^i - X_t^j) + \sqrt{2} dB_t^i, \end{cases}
$$

where $i = 1, 2, ..., N$, $Z^i = (X^i, V^i) \in \mathbb{R}^{2d}$: position and velocity of particle number *i* B_t^i : independent Brownian motions *b*: the random enviroment depending on *Z i* . *K*: interaction kernel.

Motivation-(Mean field limit)

Consider the following *N*-particle systems:

$$
\begin{cases} dX_t^i = V_t^i dt, \\ dV_t^i = b(Z_t^i) + \frac{1}{N} \sum_{j \neq i} K(X_t^i - X_t^j) + \sqrt{2} dB_t^i, \end{cases}
$$

where $i = 1, 2, ..., N$, $Z^i = (X^i, V^i) \in \mathbb{R}^{2d}$: position and velocity of particle number *i* B_t^i : independent Brownian motions *b*: the random enviroment depending on *Z i* . *K*: interaction kernel.

Formally, by Itô's formula, the limit *u* of the empirical measure $\mu_N:=\frac{1}{N}\sum_{i=1}^N \delta_{(X^i_t,V^i_t)}$ *t t* solves the following equation if $div_vb = 0$

$$
\partial_t u = \Delta_v u + v \cdot \nabla_x u + b \cdot \nabla_v u + K * \langle u \rangle \cdot \nabla_v u, \quad u(0) = u_0,
$$
 (1)

with $\langle u \rangle = \int u \mathrm{d}v$.

Motivation-(Mean field limit)

Consider the following *N*-particle systems:

$$
\begin{cases} dX_t^i = V_t^i dt, \\ dV_t^i = b(Z_t^i) + \frac{1}{N} \sum_{j \neq i} K(X_t^i - X_t^j) + \sqrt{2} dB_t^i, \end{cases}
$$

where $i = 1, 2, ..., N$, $Z^i = (X^i, V^i) \in \mathbb{R}^{2d}$: position and velocity of particle number *i* B_t^i : independent Brownian motions *b*: the random enviroment depending on *Z i* . *K*: interaction kernel.

Formally, by Itô's formula, the limit *u* of the empirical measure $\mu_N:=\frac{1}{N}\sum_{i=1}^N \delta_{(X^i_t,V^i_t)}$ *t t* solves the following equation if $div_vb = 0$

$$
\partial_t u = \Delta_v u + v \cdot \nabla_x u + b \cdot \nabla_v u + K * \langle u \rangle \cdot \nabla_v u, \quad u(0) = u_0,
$$
 (1)

with $\langle u \rangle = \int u \mathrm{d}v$.

Problem: For *b* singular, (e.g. spatial white noise), global well-posedness of (1)?

DDSDE

• When *b*, *K* are smooth, the solution of the Fokker-Planck equation [\(1\)](#page-2-1) is the density of the following Distribution Dependent SDE(DDSDE):

$$
\begin{cases} dX_t = V_t dt \\ dV_t = b(Z_t) dt + \int_{\mathbb{R}^d} K(X_t - y) \mu_t(dy) dt + dB_t \\ Z_0 \sim \mu_0 dx dv, \end{cases}
$$
 (2)

where μ_t is the distribution of X_t and B_t is a standard BM.

DDSDE

• When *b*, *K* are smooth, the solution of the Fokker-Planck equation [\(1\)](#page-2-1) is the density of the following Distribution Dependent SDE(DDSDE):

$$
\begin{cases} dX_t = V_t dt \\ dV_t = b(Z_t) dt + \int_{\mathbb{R}^d} K(X_t - y) \mu_t(dy) dt + dB_t \\ Z_0 \sim \mu_0 dx dv, \end{cases}
$$
 (2)

where μ_t is the distribution of X_t and B_t is a standard BM.

When *b* is regular: Jabin, Wang 16, Chaudru de Raynal 12, Zhang 18, Wang and Zhang, Chaudru de Raynal, Honoré, Menozii 18, Chen and Zhang 16, & Hao, Wu, Zhang 20

DDSDE

• When *b*, *K* are smooth, the solution of the Fokker-Planck equation [\(1\)](#page-2-1) is the density of the following Distribution Dependent SDE(DDSDE):

$$
\begin{cases} dX_t = V_t dt \\ dV_t = b(Z_t) dt + \int_{\mathbb{R}^d} K(X_t - y) \mu_t(dy) dt + dB_t \\ Z_0 \sim \mu_0 dx dv, \end{cases}
$$
 (2)

where μ_t is the distribution of X_t and B_t is a standard BM.

- When *b* is regular: Jabin, Wang 16, Chaudru de Raynal 12, Zhang 18, Wang and Zhang, Chaudru de Raynal, Honoré, Menozii 18, Chen and Zhang 16, & Hao, Wu, Zhang 20
- Problem: For *b* singular, (e.g. spatial white noise), global well-posedness of (2)? Nonlinear martingale problem.

• Consider the following equation

 $\partial_t u = \Delta_v u + v \cdot \nabla_x u + b \cdot \nabla_v u + K * \langle u \rangle \cdot \nabla_v u + f, \quad u(0) = u_0,$ with $\langle u \rangle = \int u \mathrm{d}v$.

• Consider the following equation

 $\partial_t u = \Delta_v u + v \cdot \nabla_x u + b \cdot \nabla_v u + K * \langle u \rangle \cdot \nabla_v u + f, \quad u(0) = u_0,$ with $\langle u \rangle = \int u \mathrm{d}v$. For some $\alpha \in (\frac{1}{2}, \frac{2}{3}), \kappa \in (0, 1),$ $b \in L^{\infty}_{\tau} \mathbf{C}_{a}^{-\alpha}(\rho_{\kappa}), f \in L^{\infty}_{\tau} \mathbf{C}_{a}^{-\alpha}(\rho_{\kappa}),$ where $\rho_\kappa(\mathsf{x}) := \langle \mathsf{x} \rangle^{-\kappa} := (1 + |\mathsf{x}|^2)^{-\kappa/2}.$

• Consider the following equation

 $\partial_t u = \Delta_v u + v \cdot \nabla_x u + b \cdot \nabla_v u + K * \langle u \rangle \cdot \nabla_v u + f, \quad u(0) = u_0,$

with $\langle u \rangle = \int u \mathrm{d}v$.

For some $\alpha \in (\frac{1}{2}, \frac{2}{3}), \kappa \in (0, 1),$

$$
b\in L^\infty_T \mathbf{C}_a^{-\alpha}(\rho_\kappa), f\in L^\infty_T \mathbf{C}_a^{-\alpha}(\rho_\kappa),
$$

where $\rho_\kappa(\mathsf{x}) := \langle \mathsf{x} \rangle^{-\kappa} := (1 + |\mathsf{x}|^2)^{-\kappa/2}.$

- Difficulty: Due to transport term $v \cdot \nabla_x$ we can gain $\frac{2}{3}$ regularity in *x* direction by kinetic Schauder estimate (scaling of *x* and *v* is 3 : 1)
	- \Rightarrow the best regularity of the solution is in L_T^{∞} C_a^{2−α} with C_a^{2−α} anisotropic Besov space.

• Consider the following equation

 $\partial_t u = \Delta_v u + v \cdot \nabla_x u + b \cdot \nabla_v u + K * \langle u \rangle \cdot \nabla_v u + f, \quad u(0) = u_0,$

with $\langle u \rangle = \int u \mathrm{d}v$.

For some $\alpha \in (\frac{1}{2}, \frac{2}{3}), \kappa \in (0, 1),$

$$
b\in L^\infty_T \mathbf{C}^{-\alpha}_a(\rho_\kappa), f\in L^\infty_T \mathbf{C}^{-\alpha}_a(\rho_\kappa),
$$

where $\rho_\kappa(\mathsf{x}) := \langle \mathsf{x} \rangle^{-\kappa} := (1 + |\mathsf{x}|^2)^{-\kappa/2}.$

Difficulty: Due to transport term $v \cdot \nabla_x$ we can gain $\frac{2}{3}$ regularity in *x* direction by kinetic Schauder estimate (scaling of *x* and *v* is 3 : 1) \Rightarrow the best regularity of the solution is in L_T^{∞} C_a^{2−α} with C_a^{2−α} anisotropic Besov

space.

(Ill-defined problem) *b* · ∇*vu* does not make sense since

$$
\mathbf{C}_{a}^{\alpha}\times\mathbf{C}_{a}^{\beta}\ni(f,g)\rightarrow fg\in\mathbf{C}_{a}^{\alpha\wedge\beta}\text{ only if }\alpha+\beta>0.
$$

• Consider the following equation

 $\partial_t u = \Delta_v u + v \cdot \nabla_x u + b \cdot \nabla_v u + K * \langle u \rangle \cdot \nabla_v u + f$, $u(0) = u_0$.

with $\langle u \rangle = \int u \mathrm{d}v$.

For some $\alpha \in (\frac{1}{2}, \frac{2}{3}), \kappa \in (0, 1),$

$$
b\in L^\infty_T \mathbf{C}^{-\alpha}_a(\rho_\kappa), f\in L^\infty_T \mathbf{C}^{-\alpha}_a(\rho_\kappa),
$$

where $\rho_\kappa(\mathsf{x}) := \langle \mathsf{x} \rangle^{-\kappa} := (1 + |\mathsf{x}|^2)^{-\kappa/2}.$

Difficulty: Due to transport term $v \cdot \nabla_x$ we can gain $\frac{2}{3}$ regularity in *x* direction by kinetic Schauder estimate (scaling of *x* and *v* is 3 : 1) \Rightarrow the best regularity of the solution is in L_T^{∞} C_a^{2−α} with C_a^{2−α} anisotropic Besov

space.

(Ill-defined problem) *b* · ∇*vu* does not make sense since

$$
\mathbf{C}_{a}^{\alpha}\times\mathbf{C}_{a}^{\beta}\ni(f,g)\rightarrow fg\in\mathbf{C}_{a}^{\alpha\wedge\beta}\text{ only if }\alpha+\beta>0.
$$

• Similar difficulty as in singular SPDEs: Hairer 14 the theory of regularity structures Gubinelli, Imkeller and Perkowski 15 : paracontrolled distribution method

• Consider the following equation

 $\partial_t u = \Delta_v u + v \cdot \nabla_x u + b \cdot \nabla_v u + K * \langle u \rangle \cdot \nabla_v u + f$, $u(0) = u_0$.

with $\langle u \rangle = \int u \mathrm{d}v$.

For some $\alpha \in (\frac{1}{2}, \frac{2}{3}), \kappa \in (0, 1),$

$$
b\in L^\infty_T \mathbf{C}^{-\alpha}_a(\rho_\kappa), f\in L^\infty_T \mathbf{C}^{-\alpha}_a(\rho_\kappa),
$$

where $\rho_\kappa(\mathsf{x}) := \langle \mathsf{x} \rangle^{-\kappa} := (1 + |\mathsf{x}|^2)^{-\kappa/2}.$

Difficulty: Due to transport term $v \cdot \nabla_x$ we can gain $\frac{2}{3}$ regularity in *x* direction by kinetic Schauder estimate (scaling of *x* and *v* is 3 : 1) \Rightarrow the best regularity of the solution is in L_T^{∞} C_a^{2−α} with C_a^{2−α} anisotropic Besov

space.

(Ill-defined problem) *b* · ∇*vu* does not make sense since

$$
\mathbf{C}_{a}^{\alpha}\times\mathbf{C}_{a}^{\beta}\ni(f,g)\rightarrow fg\in\mathbf{C}_{a}^{\alpha\wedge\beta}\text{ only if }\alpha+\beta>0.
$$

- Similar difficulty as in singular SPDEs: Hairer 14 the theory of regularity structures Gubinelli, Imkeller and Perkowski 15 : paracontrolled distribution method
- Aim: develop paracontrolled calculus to get global well-posedness of (2)

Linear equation

• For $\lambda \geqslant 0$, we consider the following linear PDE:

$$
\mathscr{L}_{\lambda} u := (\partial_t - \Delta_{v} - v \cdot \nabla_{x} + \lambda) u = b \cdot \nabla_{v} u + f, \quad u(0) = u_0.
$$
 (3)

Suppose that for some $\alpha \in (\frac{1}{2}, \frac{2}{3})$ and ρ_{κ} , $(b, f) \in L^{\infty}_{T} \mathbf{C}_{a}^{-\alpha}(\rho_{\kappa})$.

Linear equation

$$
\mathscr{L}_{\lambda} u := (\partial_t - \Delta_{v} - v \cdot \nabla_{x} + \lambda) u = b \cdot \nabla_{v} u + f, \quad u(0) = u_0.
$$
 (3)

- Suppose that for some $\alpha \in (\frac{1}{2}, \frac{2}{3})$ and ρ_{κ} , $(b, f) \in L^{\infty}_{T} \mathbf{C}_{a}^{-\alpha}(\rho_{\kappa})$.
- First difficulty: *b* · ∇*vu* is not well-defined

Linear equation

$$
\mathscr{L}_{\lambda} u := (\partial_t - \Delta_{v} - v \cdot \nabla_{x} + \lambda) u = b \cdot \nabla_{v} u + f, \quad u(0) = u_0.
$$
 (3)

- Suppose that for some $\alpha \in (\frac{1}{2}, \frac{2}{3})$ and ρ_{κ} , $(b, f) \in L^{\infty}_{T} \mathbf{C}_{a}^{-\alpha}(\rho_{\kappa})$.
- First difficulty: *b* · ∇*vu* is not well-defined
- Solution: Regularity structures/ Paracontrolled distribution

Linear equation

$$
\mathscr{L}_{\lambda} u := (\partial_t - \Delta_{v} - v \cdot \nabla_{x} + \lambda) u = b \cdot \nabla_{v} u + f, \quad u(0) = u_0.
$$
 (3)

- Suppose that for some $\alpha \in (\frac{1}{2}, \frac{2}{3})$ and ρ_{κ} , $(b, f) \in L^{\infty}_{T} \mathbf{C}_{a}^{-\alpha}(\rho_{\kappa})$.
- First difficulty: *b* · ∇*vu* is not well-defined
- Solution: Regularity structures/ Paracontrolled distribution
- • Aim: Schauder estimate for [\(3\)](#page-15-1)

Linear equation

$$
\mathscr{L}_{\lambda} u := (\partial_t - \Delta_{v} - v \cdot \nabla_{x} + \lambda) u = b \cdot \nabla_{v} u + f, \quad u(0) = u_0.
$$
 (3)

- Suppose that for some $\alpha \in (\frac{1}{2}, \frac{2}{3})$ and ρ_{κ} , $(b, f) \in L^{\infty}_{T} \mathbf{C}_{a}^{-\alpha}(\rho_{\kappa})$.
- First difficulty: *b* · ∇*vu* is not well-defined
- Solution: Regularity structures/ Paracontrolled distribution
- Aim: Schauder estimate for [\(3\)](#page-15-1)
- Second difficulty: Loss of weight from *b* · ∇*vu*

Linear equation

$$
\mathscr{L}_{\lambda} u := (\partial_t - \Delta_{v} - v \cdot \nabla_{x} + \lambda) u = b \cdot \nabla_{v} u + f, \quad u(0) = u_0.
$$
 (3)

- Suppose that for some $\alpha \in (\frac{1}{2}, \frac{2}{3})$ and ρ_{κ} , $(b, f) \in L^{\infty}_{T} \mathbf{C}_{a}^{-\alpha}(\rho_{\kappa})$.
- First difficulty: *b* · ∇*vu* is not well-defined
- Solution: Regularity structures/ Paracontrolled distribution
- Aim: Schauder estimate for [\(3\)](#page-15-1)
- Second difficulty: Loss of weight from *b* · ∇*vu*
- Solution: localization technique developed in [Zhang, Zhu, Z. 20] for ∂*^t* − ∆

Linear equation

$$
\mathscr{L}_{\lambda} u := (\partial_t - \Delta_{v} - v \cdot \nabla_{x} + \lambda) u = b \cdot \nabla_{v} u + f, \quad u(0) = u_0.
$$
 (3)

- Suppose that for some $\alpha \in (\frac{1}{2}, \frac{2}{3})$ and ρ_{κ} , $(b, f) \in L^{\infty}_{T} \mathbf{C}_{a}^{-\alpha}(\rho_{\kappa})$.
- First difficulty: *b* · ∇*vu* is not well-defined
- Solution: Regularity structures/ Paracontrolled distribution
- Aim: Schauder estimate for [\(3\)](#page-15-1)
- Second difficulty: Loss of weight from *b* · ∇*vu*
- Solution: localization technique developed in [Zhang, Zhu, Z. 20] for ∂*^t* − ∆
- • Aim: develop paracontrolled distribution method in the kinetic setting to obtain Schauder estimate for [\(3\)](#page-15-1).

Kinetic Hölder space and Schauder estimate

Define

$$
\Gamma_t f(z) := f(\Gamma_t z), \ \Gamma_t z := (x + tv, v).
$$

Let $\alpha \in (0, 2)$ and $T > 0$. Define

$$
\mathbb{S}_{7,a}^{\alpha}(\rho) := \left\{ f : \|f\|_{\mathbb{S}_{7,a}^{\alpha}(\rho)} := \|f\|_{L^{\infty}_{T}} \mathbf{c}_{a}^{\alpha}(\rho) + \|f\|_{\mathbf{C}_{T,\Gamma}^{\alpha/2}L^{\infty}(\rho)} < \infty \right\},\
$$

where for $\beta \in (0, 1)$,

$$
||f||_{\mathbf{C}^{\beta}_{T;\Gamma}L^{\infty}(\rho)} := \sup_{0 \leq t \leq T} ||f(t)||_{L^{\infty}(\rho)} + \sup_{0 < |t-s| \leq 1} \frac{||f(t) - \Gamma_{t-s}f(s)||_{L^{\infty}(\rho)}}{|t-s|^{\beta}}.
$$

Kinetic Hölder space and Schauder estimate

Define

$$
\Gamma_t f(z) := f(\Gamma_t z), \ \Gamma_t z := (x + tv, v).
$$

Let $\alpha \in (0, 2)$ and $T > 0$. Define

$$
\mathbb{S}_{T,a}^{\alpha}(\rho):=\Big\{f: \|f\|_{\mathbb{S}_{T,a}^{\alpha}(\rho)}:=\|f\|_{L^{\infty}_{T}}\mathbf{c}_{a}^{\alpha}(\rho)+\|f\|_{\mathbf{C}_{T,\Gamma}^{\alpha/2}L^{\infty}(\rho)}<\infty\Big\},
$$

where for $\beta \in (0,1)$,

$$
||f||_{\mathbf{C}^{\beta}_{T;\Gamma}L^{\infty}(\rho)} := \sup_{0 \leq t \leq T} ||f(t)||_{L^{\infty}(\rho)} + \sup_{0 < |t-s| \leq 1} \frac{||f(t) - \Gamma_{t-s}f(s)||_{L^{\infty}(\rho)}}{|t-s|^{\beta}}.
$$

Let $\mathscr{I}_{\lambda} = (\mathscr{L}_{\lambda})^{-1}$:

Lemma 2.1

[Schauder estimates] Let $\beta \in (0,2)$ *and* $\theta \in (\beta,2]$ *. For any* $q \in [\frac{2}{2-\theta},\infty]$ *and* $T > 0$ *, there is a constant C* $= C(d, \beta, \theta, q, T) > 0$ *such that for all* $\lambda \geq 0$ *and* $f \in L^q_T \mathbf{C}^{-\beta}_a(\rho),$

$$
\|\mathscr{I}_{\lambda}f\|_{{\mathbb S}^{\theta-\beta}_{T,a}(\rho)}\lesssim_C(\lambda\vee 1)^{\frac{\theta}{2}+\frac{1}{q}-1}\|f\|_{L^q_T{\mathbf{C}}^{-\beta}_a(\rho)}.
$$

Paraproducts

• Bony's decomposition:
$$
f = \sum_{i \ge -1} \Delta_i f
$$
, $\widehat{\Delta_i f} = \phi_i^a \hat{f}$, $\{\phi_i^a\}_{i \ge -1}$,

$$
fg=\sum_{i\geqslant -1}\Delta_i f\sum_{j\geqslant 0}\Delta_jg=f\prec g+f\circ g+f\succ g,
$$

where

$$
f \prec g = g \succ f := \sum_{j \geqslant 0} \sum_{i < j-1} \Delta_i f \Delta_j g
$$

 $f\circ g:=\sum_{\alpha}^{}\Delta_{i}f\Delta_{j}g,~~$ Well-defined for $\alpha+\beta>0.$ |*i*−*j*|61

Paraproducts

• Bony's decomposition:
$$
f = \sum_{i \ge -1} \Delta_i f
$$
, $\widehat{\Delta_i f} = \phi_i^a \hat{f}$, $\{\phi_i^a\}_{i \ge -1}$,

$$
fg=\sum_{i\geqslant -1}\Delta_i f\sum_{j\geqslant 0}\Delta_jg=f\prec g+f\circ g+f\succ g,
$$

where

$$
f \prec g = g \succ f := \sum_{j \geqslant 0} \sum_{i < j-1} \Delta_i f \Delta_j g
$$

 $f\circ g:=\sum_{\alpha}^{}\Delta_{i}f\Delta_{j}g,~~$ Well-defined for $\alpha+\beta>0.$ |*i*−*j*|61

• *f* \prec *g* always well defined but regularity not better than *g*.

Paraproducts

• Bony's decomposition:
$$
f = \sum_{i \ge -1} \Delta_i f
$$
, $\widehat{\Delta_i f} = \phi_i^a \hat{f}$, $\{\phi_i^a\}_{i \ge -1}$,

$$
fg=\sum_{i\geqslant -1}\Delta_i f\sum_{j\geqslant 0}\Delta_jg=f\prec g+f\circ g+f\succ g,
$$

where

$$
f \prec g = g \succ f := \sum_{j \geqslant 0} \sum_{i < j-1} \Delta_i f \Delta_j g
$$

 $f\circ g:=\sum_{\alpha}^{}\Delta_{i}f\Delta_{j}g,~~$ Well-defined for $\alpha+\beta>0.$ |*i*−*j*|61

- **•** *f* \prec *g* always well defined but regularity not better than *g*.
- $f \succ g$, $f \circ g$ regularity become better if *f* is regular.

Paracontrolled solution to linear PDE

 \bullet

Paracontrolled solution to linear PDE

$$
\mathscr{L}_{\lambda} u = b \cdot \nabla_{v} u + f = \underbrace{\nabla_{v} u \prec b}_{\text{bad term}} + \nabla u \succ b + \underbrace{b \circ \nabla_{v} u}_{\text{not well defined}} + f
$$

• Paracontrolled solution:

 \bullet

 $u = \nabla_v u \prec \mathscr{I}_\lambda b + \left(u^\sharp \right) + \mathscr{I}_\lambda f$, paracontrolled ansatz |{z} regular term

$$
u^{\sharp} = \mathscr{I}_{\lambda}(\nabla_{v} u \succ b + b \circ \nabla_{v} u) - [\mathscr{I}_{\lambda}, \nabla_{v} u \prec]b.
$$

Commutator estimate for kinetic operator

Let *P^t* be the kinetic semigroup.

Lemma 2.2

For any $\alpha \in (0,1)$, $\beta \in \mathbb{R}$, $t \in (0, T]$, $\delta \geqslant 0$, $j \geqslant -1$,

 $\|\Delta_j[P_t(f\prec g)-(\Gamma_t f\prec P_t g)]\|_{L^\infty(\rho_1\rho_2)}\lesssim t^{-\frac{\delta}{2}}2^{-(\alpha+\beta+\delta)j}\|f\|_{{\mathbf C}^\alpha_a(\rho_1)}\|g\|_{{\mathbf C}^\beta_a(\rho_2)}.$

Commutator estimate for kinetic operator

Let *P^t* be the kinetic semigroup.

Lemma 2.2

For any $\alpha \in (0, 1)$, $\beta \in \mathbb{R}$, $t \in (0, 7]$, $\delta \geqslant 0$, $j \geqslant -1$,

$$
\|\Delta_j[P_t(f\prec g)-(\Gamma_t f\prec P_t g)]\|_{L^\infty(\rho_1\rho_2)}\lesssim t^{-\frac{\delta}{2}}2^{-(\alpha+\beta+\delta)j}\|f\|_{{\mathbf C}^\alpha_a(\rho_1)}\|g\|_{{\mathbf C}^\beta_a(\rho_2)}.
$$

⇒

Lemma 2.3

Commutator estimate

$$
\|[\mathscr{I}_{\lambda},f\prec]g\|_{L^{\infty}_{T}\mathbf{C}^{\alpha+\beta+2}_{a}(\rho_{1}\rho_{2})}\lesssim_{\parallel}f\|_{\mathbb{S}^{\alpha}_{T,a}(\rho_{1})}\|g\|_{L^{\infty}_{T}\mathbf{C}^{\beta}_{a}(\rho_{2})}.
$$
\n(4)

 \Rightarrow $u \in C_{\mathcal{T}}\mathbf{C}_{a}^{2-\alpha}(\rho_{\delta}),$ $u^{\sharp} \in C_{\mathcal{T}}\mathbf{C}_{a}^{3-2\alpha}(\rho_{\delta})$

Renormalization and well-posedness of linear PDE

If $b \circ \nabla_v \mathscr{I}_\lambda b$, $b \circ \nabla_v \mathscr{I}_\lambda f \in L^{\infty}_T \mathbf{C}^{1-2\alpha}_a(\rho_\kappa)$

Renormalization and well-posedness of linear PDE

If $b \circ \nabla_v \mathscr{I}_\lambda b, b \circ \nabla_v \mathscr{I}_\lambda f \in L^\infty_T \mathbf{C}^{1-2\alpha}_a(\rho_\kappa) \Rightarrow b \circ \nabla u \in L^\infty_T \mathbf{C}^{1-2\alpha}_a(\rho_\kappa)$ by commutator estimate and paracontrolled ansatz

Renormalization and well-posedness of linear PDE

- If $b \circ \nabla_v \mathscr{I}_\lambda b, b \circ \nabla_v \mathscr{I}_\lambda f \in L^\infty_T \mathbf{C}^{1-2\alpha}_a(\rho_\kappa) \Rightarrow b \circ \nabla u \in L^\infty_T \mathbf{C}^{1-2\alpha}_a(\rho_\kappa)$ by commutator estimate and paracontrolled ansatz
- Let *b* be a Gaussian field with the following covariance:

$$
\mathbb{E}\big(b(g_1)b(g_2)\big)=\int_{\mathbb{R}^{2d}}\hat{g}_1(\zeta)\,\hat{g}_2(-\zeta)\mu(\mathrm{d}\zeta).
$$

Assumption: μ is symmetric in second variable and for some $\beta \in (\frac{1}{2}, \frac{2}{3}),$

$$
\sup_{\zeta' \in \mathbb{R}^{2d}} \int_{\mathbb{R}^{2d}} \frac{\mu(\mathrm{d}\zeta)}{(1+|\zeta'+\zeta|_a)^{2\beta}} < \infty.
$$

Probabilistic calculation $\Rightarrow b \circ \nabla_{v} \mathscr{I}_{\lambda} b \in L^{\infty}_{\tau} C^{1-2\alpha}_{a}(\rho_{\kappa})$

Renormalization and well-posedness of linear PDE

- If $b \circ \nabla_v \mathscr{I}_\lambda b, b \circ \nabla_v \mathscr{I}_\lambda f \in L^\infty_T \mathbf{C}^{1-2\alpha}_a(\rho_\kappa) \Rightarrow b \circ \nabla u \in L^\infty_T \mathbf{C}^{1-2\alpha}_a(\rho_\kappa)$ by commutator estimate and paracontrolled ansatz
- Let *b* be a Gaussian field with the following covariance:

$$
\mathbb{E}\big(b(g_1)b(g_2)\big)=\int_{\mathbb{R}^{2d}}\hat{g}_1(\zeta)\,\hat{g}_2(-\zeta)\mu(\mathrm{d}\zeta).
$$

Assumption: μ is symmetric in second variable and for some $\beta \in (\frac{1}{2}, \frac{2}{3}),$

$$
\sup_{\zeta' \in \mathbb{R}^{2d}} \int_{\mathbb{R}^{2d}} \frac{\mu(\mathrm{d}\zeta)}{(1+|\zeta'+\zeta|_a)^{2\beta}} < \infty.
$$

Probabilistic calculation $\Rightarrow b \circ \nabla_{v} \mathscr{I}_{\lambda} b \in L^{\infty}_{\tau} C^{1-2\alpha}_{a}(\rho_{\kappa})$

Interesting point: 0th Wiener chaos is not zero but there's no renormalization term

Renormalization and well-posedness of linear PDE

- If $b \circ \nabla_v \mathscr{I}_\lambda b, b \circ \nabla_v \mathscr{I}_\lambda f \in L^\infty_T \mathbf{C}^{1-2\alpha}_a(\rho_\kappa) \Rightarrow b \circ \nabla u \in L^\infty_T \mathbf{C}^{1-2\alpha}_a(\rho_\kappa)$ by commutator estimate and paracontrolled ansatz
- Let *b* be a Gaussian field with the following covariance:

$$
\mathbb{E}\big(b(g_1)b(g_2)\big)=\int_{\mathbb{R}^{2d}}\hat{g}_1(\zeta)\,\hat{g}_2(-\zeta)\mu(\mathrm{d}\zeta).
$$

Assumption: μ is symmetric in second variable and for some $\beta \in (\frac{1}{2}, \frac{2}{3}),$

$$
\sup_{\zeta' \in \mathbb{R}^{2d}} \int_{\mathbb{R}^{2d}} \frac{\mu(\mathrm{d}\zeta)}{(1+|\zeta'+\zeta|_a)^{2\beta}} < \infty.
$$

Probabilistic calculation $\Rightarrow b \circ \nabla_{v} \mathscr{I}_{\lambda} b \in L^{\infty}_{\tau} C^{1-2\alpha}_{a}(\rho_{\kappa})$

Interesting point: 0th Wiener chaos is not zero but there's no renormalization term

Theorem 1

 \mathcal{L} et $\alpha \in (\frac{1}{2}, \frac{2}{3})$ and $\vartheta := \frac{9}{2-3\alpha}$ and $\delta := (2\vartheta + 2)\kappa \leqslant 1$. For any $\mathcal{T} > 0$, (b, f) as above, $\exists!$ p aracontrolled solution (u, u^{\sharp}) to PDE [\(3\)](#page-15-1) such that $\|u\|_{C_T{\bf C}_T^2^{-\alpha}(\rho_\delta)}+\|u^{\sharp}\|_{C_T{\bf C}_T^3^{-2\alpha}(\rho_\delta)}\lesssim$ $C(b, f)$.

Nonlinear equation

Nonlinear mean field equation

• Consider the following

 \bullet

$$
\mathscr{L} u = b \cdot \nabla_{v} u + K * \langle u \rangle \cdot \nabla_{v} u, \quad u(0) = u_{0}.
$$

Here $\langle u \rangle (t, x) := \int_{\mathbb{R}^d} u(t, x, v) \mathrm{d}v.$ Assume that

 $\mathcal{K} \in \cup_{\beta > \alpha - 1} \mathbf{C}_{\mathsf{x}}^{\beta / 3}, b \circ \nabla_{\mathsf{v}} \mathscr{I}(b) \in \mathbf{C}_{\mathsf{a}}^{1 - 2 \alpha}(\rho_{\kappa})$

Nonlinear mean field equation

• Consider the following

$$
\mathscr{L} u = b \cdot \nabla_{v} u + K * \langle u \rangle \cdot \nabla_{v} u, \quad u(0) = u_{0}.
$$

Here $\langle u \rangle (t, x) := \int_{\mathbb{R}^d} u(t, x, v) \mathrm{d}v.$ Assume that

$$
\mathsf{K}\in \cup_{\beta>\alpha-1}\mathbf{C}_x^{\beta/3}, b\circ\nabla_v \mathscr{I}(b)\in \mathbf{C}^{1-2\alpha}_a(\rho_\kappa)
$$

Theorem 2

 \bullet

Let $\alpha \in (\frac{1}{2}, \frac{2}{3})$ and κ be small enough so that $\delta := 2(\frac{9}{2-3\alpha} + 1)\kappa < 1$ *.*

- for any probability density $u_0\in L^1(\rho_0)\cap {\bf C}^\gamma_d$, $\gamma>1+\alpha$, ∃ at least a probability density $\bm{\rho}$ aracontrolled solution $\bm{\mathsf{u}}\in\mathsf{L}^\infty_\mathcal{T}(\mathbf{C}^{2-\alpha}(\rho_\delta))$ to nonlinear mean field equation.
- *If in addition that K is bounded, then for any initial data* $u_0 \in L^1(\rho_0) \cap \mathbf{C}_a^{\gamma}$ *with* $e^{-\rho_0} \in L^1$ satisfying $H(u_0) := \int u_0 \ln u_0 < \infty$, the solution is unique.

A priori estimate: Linear approximation and use Theorem 1

- A priori estimate: Linear approximation and use Theorem 1
- Moment estimate of some SDE by Krylov's estimate $\Rightarrow \|u(t)\|_{L^1(\rho_0)} \leqslant C \|\varphi\|_{L^1(\rho_0)}$

- A priori estimate: Linear approximation and use Theorem 1
- Moment estimate of some SDE by Krylov's estimate $\Rightarrow \|u(t)\|_{L^1(\rho_0)} \leqslant C \|\varphi\|_{L^1(\rho_0)}$
- $H(\varphi) < \infty$ by entropy estimate $\Rightarrow H(u(t)) + ||\nabla_{v}u||^{2}_{L_{t}^{2}L^{1}} \leqslant H(\varphi).$

- A priori estimate: Linear approximation and use Theorem 1
- Moment estimate of some SDE by Krylov's estimate $\Rightarrow \|u(t)\|_{L^1(\rho_0)} \leqslant C \|\varphi\|_{L^1(\rho_0)}$
- $H(\varphi) < \infty$ by entropy estimate $\Rightarrow H(u(t)) + ||\nabla_{v}u||^{2}_{L_{t}^{2}L^{1}} \leqslant H(\varphi).$
- Existence: approximation by convolution with smooth modifier

- A priori estimate: Linear approximation and use Theorem 1
- Moment estimate of some SDE by Krylov's estimate $\Rightarrow \|u(t)\|_{L^1(\rho_0)} \leqslant C \|\varphi\|_{L^1(\rho_0)}$
- $H(\varphi) < \infty$ by entropy estimate $\Rightarrow H(u(t)) + ||\nabla_{v}u||^{2}_{L_{t}^{2}L^{1}} \leqslant H(\varphi).$
- Existence: approximation by convolution with smooth modifier
- Uniqueness: Linear approximation and a priori estimate of $\|\nabla_{v} u\|_{L_{t}^{2}L^{1}}^{2}$ and L^{1} estimate

Singular DDSDE

[Singular DDSDE](#page-45-0)

Singular DDSDE

Consider the following kinetic DDSDE with singular drift:

$$
dX_t = V_t dt, \ dV_t = b(X_t, V_t)dt + (K * \mu_{X_t})(X_t)dt + \sqrt{2}dB_t,
$$
\n(5)

- *B^t* : a *d*-dimensional Brownian motion
- μ_{X_t} : law of X_t

•
$$
K * \mu(x) := \int_{\mathbb{R}^d} K(x - y) \mu(dy)
$$
.

b is singular

Problem: How to understand [\(5\)](#page-45-1)?

Consider the following linear equation for given $\mu : [0, T] \to \mathcal{P}(\mathbb{R}^{2d})$

$$
(\partial_t + \Delta_v + v \cdot \nabla_x)u + b \cdot \nabla_v u + K * \mu_t \cdot \nabla_v u = f, \ u(T) = \varphi.
$$
 (6)

Definition 4.1

(Martingale problem) Let $\delta > 0$. A probability measure $\mathbb{P} \in \mathcal{P}(\mathcal{C}_\mathcal{T})$ is called a martingale *solution to SDE* [\(5\)](#page-45-1) *starting from* $\nu \in \mathcal{P}_\delta(\mathbb{R}^{2d})$, if $\mathbb{P}\circ Z_0^{-1} = \nu$ *and for all f* $\in C_b([0, T] \times$ \mathbb{R}^{2d}), $\varphi \in \mathbf{C}^\gamma_a(\mathbb{R}^{2d})$ with some $\gamma > 1 + \alpha$ and $\mu_t := \mathbb{P} \circ X_t^{-1}$,

$$
M_t := u_t^{\mu}(t,Z_t) - u_t^{\mu}(0,Z_0) - \int_0^t f(s,Z_s) \mathrm{d} s
$$

is a martingale under $\mathbb P$ with respect to $(\mathscr B_t)$. Here u^μ_f is a solution to [\(6\)](#page-45-2).

Main results

Theorem 3

Suppose that b \circ ∇_v $\mathscr{I}(b) \in \mathbf{C}^{1-2\alpha}_a(\rho_\kappa)$ and $K \in \cup_{\beta > \alpha - 1} \mathbf{C}^\beta_a$. Then there exists at least *one martingale solution* $\mathbb P$ *to SDE* [\(5\)](#page-45-1)*. Moreover, if K is bounded measurable, then the solution is unique.*

Main results

Theorem 3

Suppose that b \circ ∇_v $\mathscr{I}(b) \in \mathbf{C}^{1-2\alpha}_a(\rho_\kappa)$ and $K \in \cup_{\beta > \alpha - 1} \mathbf{C}^\beta_a$. Then there exists at least *one martingale solution* $\mathbb P$ *to SDE* [\(5\)](#page-45-1)*. Moreover, if K is bounded measurable, then the solution is unique.*

Idea of proof

Existence: approximation by convolution with smooth modifier

Main results

Theorem 3

Suppose that b \circ ∇_v $\mathscr{I}(b) \in \mathbf{C}^{1-2\alpha}_a(\rho_\kappa)$ and $K \in \cup_{\beta > \alpha - 1} \mathbf{C}^\beta_a$. Then there exists at least *one martingale solution* $\mathbb P$ *to SDE* [\(5\)](#page-45-1)*. Moreover, if K is bounded measurable, then the solution is unique.*

- Existence: approximation by convolution with smooth modifier
- • Uniqueness: First for $K = 0$ and Girsanov's tansformation

Thank you !